ده است?زاویه تلاقی خورشیدیoffخاموش شدن پمپ مابین تانک و کالکتورonروشن شدن پمپ مابین تانک و کالکتورm,iجریان شبکه در گره iاز تانک ذخیره آب داغS,iوضعیت تانک در گره iاز تانکCOخروجی از کالکتورL,rخروجی از بار(ژنراتور)inter ورود به سطح تماس دو گره در تانک ذخیره آب داغrefمرجع(ورود به ژنراتور)auxهیتر کمکیloadبار(ژنراتور)Dتخریب اگزرژیPمحصولfسوختWکارqانتقال حرارتinsادوات کنترلی و ابزار دقیقSCکالکتور خورشیدیTتانک ذخیره آب داغTankتانک ذخیره آب داغCollectorکالکتور خورشیدیCقیمت بر واحد سطح کالکتور خورشیدیwbحباب ترCooling TowerبالانویسLبار وارده از طرف تانک ذخیره آب داغ به کالکتورcکالکتور خورشیدیCHشیمیاییPHفیزیکیCIهزینه های سرمایه گذاریOMهزینه های عملیاتی و تعمیراتCHشیمیایی
مقدمه
تولید سرمایش در زمینه زندگی روزمره بشری، کابردهای بسیار فراوانی از قبیل تولید مواد غذایی، مصارف تهویه مطبوع، موارد تولید دارو، سرمایش صنعتی و….دارد. سیکلهای سرمایش قدیمی و اولیه مانند سیکلهای تراکمی بخار1 دارای دو مشکل عمده هستند که امروزه نیز با آن دست در گریبانند. این دو مشکل عبارتند از[1]:
-افزایش جهانی مصرف انرژیهای اولیه و فسیلی: سیکلهای سرمایش قدیمی که توسط الکتریسیته و حرارت عمل میکنند، به طور شدیدی میزان زیادی انرژی فسیلی و اکتریکی را مصرف میکنند. انستیتوی بین المللی تبرید و سرمایش در پاریس(IIFIIR) %15از میزان کل انرژی الکتریکی که در جهان تولید میشود را به اهداف سرمایشی و تهویه مطبوع در انواع گوناگون آن اختصاص داده است. مطابق با گزارش این سازمان، %45 از سهم انرژیهای مصرفی برای زمینههای تهویه مطبوع، به مصارف ساختمانهای مسکونی و تجاری اختصاص دارد. علاوه بر آن در تابستان مشکلات بسیار زیاد در افزایش چشمگیر پیک مصرف همچنان ذهن محققان را در کاهش آن به خود مشغول داشته است.
-سیستمهای سرمایش متداول سبب مشکلات زیست محیطی جدی میشدند: سیالات عامل2 مرسوم و غیر طبیعی در سیستمهای تجاری سابق(همانند کلرو فلو کربن ها(CFCs)، هیدروکلرو فلوروکربنها(HCFCs)و هیدروفلروکربنها(HFCs))سبب هر دو مشکل تخریب لایه اوزون و افزایش گرما در سرتاسر جهان میشدند. از زمان تصویب پروتوکل مونترال در سال 1987، توافقات بینالمللی بر کاهش استفاده از این سیالات تأکید کردهاند. به عنوان مثال اتحادیه اروپا بیان کرده که تا سال 2015 تمامی سیستمهایی که با سیال HFCFs کار میکنند میبایست از مدار خارج گردند.
بعد از بحران نفتی دهه 1970 در اروپا و به ویژه در سالهای اخیر، تحقیقات بر روی توسعه تکنولوژیهایی که سبب کاهش در مصرف انرژی، تقاضای پیک اکتریسیته و قیمت انرژی بدون کاهش در سطح شرایط مطبوع لازمه گردند، معطوف گشتهاند. به همین دلیل در سالهای اخیر امکان استفاده از انرژی خورشیدی برای سرمایش و رطوبت زدایی ذهن بشر را به خود مشغول کرده است و موجب پیشرفت در تکنولوژی بهره برداری از انرژی خورشیدی شده است. در مناطق گرم سیری جهان که ضرورت سرمایش و تهویه مطبوع به طور جدی وجود دارد، ذهن بشر متوجه استفاده از انرژی در دسترس خورشیدی است تا بتواند با استفاده از آن رفاه و آسایش زندگی را فراهم آورد. علاوه بر این، کاربرد انرژی خورشیدی در مقایسه با سایر کاربردها جذابیت بیشتری دارد زیرا زمانی که نیاز به آن وجود دارد (سرمایش و تهویه مطبوع) میزان انرژی خورشیدی زیاد است و می توان از آن بهره گیری کرد. سیستمهای سرمایش جذبی خورشیدی3دارای هر دو مزیت عدم خطرناک بودن از لحاظ زیست محیطی و کم بودن مصرف انرژی به ویژه در ساعات پیک الکتریکی را دارا هستند.
در مقایسه با دیگر کاربردهای انرژی خورشیدی این کاربرد پیچیدگی بیشتری دارد چه به لحاظ مفهومی و چه به لحاظ کاربردی. به همین دلیل توسعه و کاربرد جهانی پیدا نکرده است. در این روش تنها دریافت و جذب انرژی خورشیدی کافی نیست، بلکه باید بتوانیم این روش را به سرما تبدیل کنیم و سپس به طرف فضای مورد نظر بفرستیم. باید وسیله ای وجود داشته باشد که حرارت را از دمای پایین (فضای مورد تهویه) گرفته و با دمای بالاتر (فضای بیرون) انتقال دهد یا در اصطلاح ترمودینامیکی به یک پمپ حرارتی4 نیاز است. در شکل 1 نمای یک سیکل تهویه مطبوع خورشیدی با تمام تجهیزات به طور کامل نشان داده شده است.

سیال منتقل کننده حرارت در کالکتورهای خورشیدی تا دمای بالاتر از دمای محیط گرم شده و به عنوان محرک و انرژی در یک سیکل قدرت (که خود یک پمپ حرارتی است) وارد میگردد.
سیال انتقال دهنده گرما ممکن است هوا، آب و یا سیال دیگری باشد. گرما میتواند برای زمانهایی که تابش خورشید وجود ندارد نیز ذخیره گردد. گرمای گرفته شده از سیکل خنککن خورشیدی به محیط اطراف منتقل میشود، این کار به وسیله هوای محیط یا آب خروجی از برج خنک کن خنک میشود.
تجهیزات سرمایش ممکن است اثر سرمایش را به طرق مختلف ایجاد کنند. یکی از روشها تولید آب سرد و فرستادن به سمت تجهیزاتی است که به وسیله ی آب سرد محیط را خنک میکنند (به کمک هواساز) و یا فنهای بادزن. همچنین میتوان هوا را به صورت مستقیم خنک کرد و به سمت فضای مورد تهویه فرستاد.
کالکتورهای خورشیدی5 قسمت مهمی از هر سیستم خورشیدی هستند که انرژی خورشیدی را به گرما در دمای مناسب تبدیل میکنند، که این گرما قدرت مورد نیاز برای سیکل سرمایش است. کالکتورها انواع مختلفی دارند که از صفحات تخت با دمای پایین تا صفحات پیچیده با دمای بسیار بالا را شامل میشوند. با افزایش تقاضا برای تهویه مطبوع در سالهای اخیر به خصوص در مناطق گرمسیر و مرطوب تقاضا برای مصرف انرژی زیاد شده است. از آنجایی که در فصل گرما تقاضا برای مصرف انرژی الکتریکی بسیار زیاد میشود در این فصل با قطعی جریان برق مواجه هستیم و تقاضای بیشتر برای انرژی الکتریکی با مشکل مواجه است. با استفاده از تکنولوژیهای جدید میتوان از انرژی خورشیدی در چنین مواقعی استفاده کرد.

شکل (1): نمای یک سیکل تهویه مطبوع خورشیدی
در این نوشتار سیکلهای جذبی خورشیدی مورد بررسی قرار خواهد گرفت. ابتدا مطالعه مقدماتی و حرارتی سیستمهای جذبی متداول و سیستمهای جذبی خورشیدی مورد بررسی قرار گرفته است. با توجه به متغیر بودن میزان تابش خورشیدی در طول ماهها و ساعات مختلف فصول گرمایی، آنالیز حرارتی و ترمودینامیکی به صورت وابسته به زمان ( آنالیز دینامیکی) مورد تحلیل وبررسی قرار گرفته است. در مرحله بعد آرایش کامل سیستمهای جذبی خورشیدی از نظر موضوعات اگزرژی و قانون دوم مورد بررسی قرار گرفته تا به کمک آن تحلیل جامع ترمواکونومیک سیستم و بهینه سازی آن قابل بررسی باشد.

مرور تحقیقات انجام شده قبلی
کارایی کلی سیکلهای جذبی در مورد اثر تبریدی در واحد انرژی ورودی ضعیف است. هرچند حرارت اتلافی مانند آنچه از وسایل برقی دفع میشود را میتوان برای به دست آوردن بهرهوری انرژی کلی بکار گرفت. سیستمهای آمونیاک/آب (NH3/H2O) به صورت گسترده درمواردی که دمای کمتر مورد نیاز است، بکار گرفته میشوند. هرچند، سیستمهای آب/ برمید لیتیم (H2O/LiBr) به صورت وسیع در مواردی که دمای معتدل مورد نیاز است، مورد استفاده قرار میگیرند (دستگاه تهویه هوا) و سیستم دوم نسبت به سیستم اول کارآمدتر است. مطالعات گوناگونی برای انتخاب سیال عامل مناسب اجرا شده است.در تحقیق Saravanan و Maiya [2] یک سیستم مبرد جذبی بخار بر پایه آب با چهار مخلوط دو دویی مورد آزمایش قرار گرفت. اختلاف کاراییهای گوناگون پارامترها برای ترکیبات سیالات عامل بر پایه آب مورد مقایسه قرار گرفت. در تحقیق Sun [3]خصوصیات ترمودینامیکی مخلوط های دودویی بر پایه آمونیاک (NH3-H2O,NH3-LiO2,NH3-NaSCN) داده شدو کارایی سیکلها مورد مقایسه قرار گرفت. Yoon و Kown [4] خصوصیت کارکردی سیال عامل جدید (H2O/LiBr + HO(CH2)3OH) را به عنوان جانشین H2O/LiBr ارائه کرد، و یک شبیه سازی سیکل برای بررسی طراحی بهینه و شرایط کارکردی سیستم جذبی هوای خنک شده انجام شد. Kayanaki و Yamankaradeniz [5] اثر مبدلهای حرارتی که برای احیاء انرژی حرارتی در ARS ها بکار میروند، را بر روی ضریب کارایی (COP) مورد بررسی قرار دادند. یک محلول آمونیاک-آب به عنوان یک جفت مبرد- جاذب در نظر گرفته شد. آنالیزهای ترمودینامیکی برروی سیستم انجام شد و خصوصیات ترمودینامیکی آمونیاک و محلول آمونیاک- آب ارائه گردید. Mostafavi و Agnew[6و7] اثر دمای محدود را بر روی واحدهای جذبی که در آنه