د به بررسی آن پرداخته میشود. به عنوان بخشی از کاربردهای صنعتی و مهندسی و نمونههای عملی این جریان، میتوان به موارد زیر اشاره کرد:
جابجایی هوا و تهویه در داخل بناها و ساختمانها، تانکرهای ذخیره مایعات، ساختار سلولهای خورشیدی، خنک کاری تجهیزات الکترونیکی، انتقال حرارت طی رشد کریستالها و جریان بین دیوارههای رآکتور هستهای.
میدانیم وقتی قسمتی از سیال نسبت به قسمت دیگر گرمتر باشد، منبسط شده و چگالی آن کم میشود. به همین دلیل است که گردابههای حرارتی در اتمسفر و اقیانوسها ایجاد میگردند و یا بالنهایی که با هوای گرم پر میشوند، بالا میروند. جابجاییهای طبیعی به دو دسته تقسیم میگردند که هر کدام با الگوهای رفتاری خاصی مشخص میشوند. اولین دسته که “گرمایش از سطح زیرین”4 نام دارد، در اثر حرارت دادن یک صفحه زیرین که سیال سردتری در روی آن در جریان است، ایجاد میگردد. مشخصه اصلی این دسته، وجود ساختارهای بزرگ و منسجم در سیال مانند پلومها5، سلولهای حرارتی6 و سلولهای رایلی-بنارد7 است. دومین دسته به “گرمایش از کنارهها”8 معروفند که صفحه عمودی گرم سادهترین مثال این دسته به شمار میرود. مشخصه اصلی این دسته هم گرادیانهای شدید دما و سرعت در لایههای مرزی است.
امروزه، تحقیقات مکانیک سیالات در این خصوص به دو زمینه مطالعاتی محدود میشود. زمینه مطالعاتی اول اندازهگیری تجربی دادههای جریان و دیگری، شبیه سازی عددی معادلات ریاضی حاکم بر جریان است. مطالعه در هر کدام از این زمینهها مشکلات مخصوص به خود را دارد. کار تجربی از نااطمینانیهایی که در شرایط مرزی وجود دارد و همچنین مشکل اندازه واقعی مدل رنج میبرد و معمولا پر هزینهتر از روش عددی است. هر چند برای اثبات درستی روش عددی و بدست آوردن فرضیات و ثوابت تجربی، روش تجربی همواره لازم است. اما اگر یک مدل عددی برای حالت خاصی به کمک دادههای تجربی تأیید شود، نتایج آن مدل برای حالتهای مشابه نیز قابل استناد است، بدون اینکه برای آن حالتها نیاز به هزینه کار تجربی باشد و این نقطه قوت شبیه سازی عددی است.
1-2- نانوسیال
گرمایش و سرمایش یک سیستم توسط سیال در بسیاری از صنایع مانند صنایع الکترونیک، نیروگاهها، دستگاههای نوری ،آهنرباهای ابر رسانا، کامپیوترهای فوق سریع، موتورهای ماشین و بسیاری از کارخانجات از اهمیت زیادی برخوردار است. تمامی سیستمهای خنک کننده وگرمایشی بر پایه انتقال حرارت طراحــی میشوند. با توجه به این امر توسعه تکنیکهای موثر انتقال حرارت با توجه به محدودیت منابع طبیعی و تمایل به کاهش هزینهها بسیار ضروری میباشد. بطور معمول سیستمهای خنک کننده با هوا بیشتر مورد استفاده قرار گرفته و قابل اطمینانتر هستند. اما زمانیکه نیاز به شار حرارتی9 بالا و انتقال حرارت سریع وجود دارد، از مایعاتی مانند آب، اتیلن گلیکول و مایعات مناسب دیگر استفاده میشود که محدودیت حرارتی دارند. سیالات معمول مورد استفاده برای انتقال حرارت دارای ضریب رسانش حرارتی پایین میباشند، در حالی که فلزات دارای رسانش حرارتی بالاتر از سه برابر اینگونه سیالات میباشند. بنابراین استفاده از ذرات جامد فلزی و ترکیب آنها با اینگونه سیالات برای افزایش ضریب رسانش حرارتی و در نتیجه افزایش راندمان حرارتی بسیار مطلوب به نظر میرسد.
ماکسول در سال 188110 [1] برای اولین بار بحث افزایش ذرات جامد به سیال را مطرح کرد و رابطهای برای ضریب رسانش حرارتی مخلوط سیال خالص و ذرات جامد ارائه نمود. سالها استفاده از سوسپانسیون سیال و ذرات جامد بسیار کوچک در ابعاد میکرو مورد توجه محققین بوده است. اما این سیالات با ذرات جامد معلق در حد میکرومتر11 مشکلات فراوانی مانند رسوب گذاری، ناخالصی، خوردگی و افزایش افت فشار و… داشتهاند تا اینکه ابتدا ماسودا و همکاران [2] و سپس چویی [3] ایده نانوسیال12 را برای اولین بار مطرح نمودند و انقلاب بزرگی در زمینه انتقال حرارت در سیالات پدید آوردند. همچنین به مقدار زیادی خوردگی، ناخالصی و مشکلات افت فشار به دلیل کوچک بودن ذرات کاهش پیدا کرد و از طرفی پایداری برخی سیالات در مقابل رسوبگذاری بطور چشمگیری بهبود یافت. نانوتکنولوژی بطور کلی معرف روش جابجایی تکتک اتمها و آرایش آنها به صورت دلخواه میباشد. به همین سبب اندازه و ابعاد کاری این مجموعه بسیار کوچکاند که البته پیشوند نانو بیانگر حدود این فناوری است. نانوسیال عبارت است از ذرات بسیار ریز جامد در ابعاد بین 1 تا 100 نانومتر13 معلق در یک سیال پایه. بطور معمول نانوذرات از جنس فلزاتی مانند مس، آلومینیوم، پتاسیم، سیلیسم و اکسیدهای آنها و سیالات پایه نیز عمدتا از سیالات با رسانایی پایین مانند آب، اتیلن گلیکول و سیالاتی از این دسته که در صنعت به عنوان هادی انتقال حرارت مورد استفاده قرار میگیرند، میباشند. در سالهای اخیر افزایش ذرات جامد به سیال به دلیل افزایش خواص حرارتی سیال و در نتیجه افزایش انتقال حرارت مورد توجه بسیاری از محققین قرار گرفته است. تحقیقات محققین نشان میدهد که ضریب رسانش حرارتی در نانوسیال حدود 15 تا 40 درصد و راندمان حرارتی حدود 40 درصد نسبت به سیال پایه افزایش می یابد [4].

1-3- تولید نانوسیال
بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپانسیون‌ها14 دارد تا از ته‌نشینی و ناپایداری آنها جلوگیری شود. متناسب با کاربرد، انواع بسیاری از نانوسیالات از جلمه نانوسیال اکسید فلزات15، نیتریت‌ها، کاربید فلزات و غیرفلزات که به وسیله یا بدون استفاده از پایدار کنندهها در سیالاتی مانند آب، اتیلن گلیکول16 و روغن به وجود آمده است. مطالعات زیادی روی چگونگی تهیه نانوذرات و روش‌های پراکنده‌سازی آنها درسیال پایه انجام شده است که در اینجا بطور مختصر چند روش متداول‌که برای تهیه نانوسیال وجود دارد ذکر خواهد شد.
یکی از روش‌های متداول تهیه نانوسیال، روش دو مرحله‌ای است. در این روش ابتدا نانوذره معمولاً به وسیله روش رسوب بخار شیمیایی 17(CVD) در فضای گاز بی‌اثر به صورت پودرهای خشک تهیه می‌شود در مرحله بعد نانوذره در داخل سیال پراکنده می‌شود. برای این کار از روش‌هایی مانند لرزاننده‌های مافوق صوت و یا از سورفکتانت‌ها استفاده می‌شود تا توده‌های نانوذره‌ای به حداقل رسیده و باعث بهبود رفتار پراکندگی شود. روش دو مرحله‌ای برای بعضی موارد مانند اکسید فلزات در آب دیونیزه شده بسیار مناسب است و برای نانوسیالات شامل نانوذرات فلزی سنگین بدلیل تمایل آنها به انباشتگی، کمتر موفق بوده است. روش دو مرحله‌ای دارای مزایای اقتصادی بالقوه‌ای است؛ زیرا شرکت‌های زیادی توانایی تهیه نانوپودرها در مقیاس صنعتی را دارند.
روش یک مرحله‌ای نیز به موازات روش دو مرحله‌ای پیشرفت کرده است، بطور مثال نانوسیالاتی شامل نانوذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شده‌اند. در این روش، منبع فلزی تحت شرایط خلاء تبخیر می‌شود و تراکم توده نانوذرات به حداقل خود می‌رسد، اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب می‌شود، ولی با این حال روش‌های شیمیایی تک مرحله‌ای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله می‌توان به روش احیای نمک فلزات و تهیه سوسپانسیون آن در حلال‌های مختلف برای تهیه نانوسیال فلزات اشاره کرد. مزیت اصلی روش یک مرحله‌ای، کنترل بسیار مناسب روی اندازه و انباشتگی کمتر نانوذرات نسبت به روش دو مرحلهای است.
1-4- پارامترهای انتقال حرارت در نانوسیالات
افزایش انتقال حرارت در نانوسیالات به پارامترهای زیادی بستگی دارد که در این بخش هرکـدام از آنها بطور مختصر توضیح داده خواهد شد .
1-4-1- انباشتگی ذرات
نانوذرات در اثر نیروهای بین ملکولی مانند نیروی واندروالس تمایل به انباشتگی18 دارند [5]. کارتیکین و همکاران [6] آزمایشهای تجربی روی مخلوط اکسید مس-آب انجام دادند و نشان دادند که اندازه و خوشه شدن نانوذرات اثر مهمی روی رسانش حرارتی نانوسیال دارند. همچنین آنها نشان دادند که انباشتگی نانوذرات به زمان بستگی دارد و با گذشت زمان انباشتگی آنها افزایش مییابد در نتیجه رسانش حرارتی در نانوسیال کاهش مییابد. شکل (1-1) نشان میدهد که رسانش حرارتی در نانوسیال با افزایش زمان شدیدا کاهش مییابد و همچنین در شکل (1-2) انباشتگی نانوسیال با گذشت زمان به صورت میکروسکوپی نشان داده شده است. آنها نشان دادند که در این فاصله زمانی هیچگونه تهنشینی در نانوسیال اتفاق نیفتاده است. گروهی دیگر از دانشمندا